Finding Predominant Word Senses in Untagged Text

Diana McCarthy & Rob Koeling & Julie Weeds & John Carroll
Department of Informatics,
University of Sussex,
Brighton BN1 9QH, UK

diana_robb.julieweeds.johnec@sussex.ac.uk

Abstract

In word sense disambiguation (WSD), the heuristic of choosing the most common sense is extremely powerful because the distribution of the senses of a word is often skewed. The problem with using the predominant, or first sense heuristic, aside from the fact that it does not take surrounding context into account, is that it assumes some quantity of hand-tagged data. Whilst there are a few hand-tagged corpora available for some languages, one would expect the frequency distribution of the senses of words, particularly topical words, to depend on the genre and domain of the text under consideration. We present work on the use of a thesaurus acquired from raw textual corpora and the WordNet similarity package to find predominant noun senses automatically. The acquired predominant senses give a precision of 64% on the nouns of the SENSEVAL-2 English all-words task. This is a very promising result given that our method does not require any hand-tagged text, such as SemCor. Furthermore, we demonstrate that our method discovers appropriately the senses for words from two domain-specific corpora.

1 Introduction

The first sense heuristic which is often used as a baseline for supervised WSD systems operates on many of these systems which take surrounding context into account. This is shown by the results of the English all-words task in SENSEVAL-2 (Cor- ton et al., 1998) in figure 1 below, where the first sense is that listed in WordNet for the PoS given by the Penn TreeBank (Palmer et al., 2001). The senses in WordNet are ordered according to the frequency data in the manually tagged resource SemCor (Miller et al., 1993). Senses that have not occurred in SemCor are ordered arbitrarily and after those senses of the word that have occurred. The figure distinguishes systems which make use of hand-tagged data (using HTD) such as SemCor, from those that do not (without HTD). The high performance of the first sense baseline is due to the skewed frequency distribution of word senses. Even systems which show superior performance to this heuristic often make use of the heuristic where evidence from the context is not sufficient (Hoste et al., 2001). Whilst a first sense heuristic based on a sense-tagged corpus such as SemCor is clearly useful, there is a strong case for obtaining a first, or predominant, sense from untagged corpus data so that a WSD system can be tuned to the genre or domain at hand.

SemCor comprises a relatively small sample of 250,000 words. There are words where the first sense in WordNet is counter-intuitive, because of the size of the corpus, and because where the frequency data does not indicate a first sense, the ordering is arbitrary. For example the first sense of tiger in WordNet is audacious person whereas one might expect that carnivorous animal is a more common usage. There are only a couple of instances of tiger within SemCor. Another example is em- bryo, which does not occur at all in SemCor and the first sense is listed as rudimentary plant rather than the anticipated fertilised egg meaning. We believe that an automatic means of finding a predominant sense would be useful for systems that use it as a means of backing-off (Wilks and Stevenson, 1998; Hoste et al., 2001) for systems that use it in lexical acquisition (McCarthy, 1997; Merlo and Leybold, 2001; Kerhorn, 2002) because of the limited size of hand-tagged resources. More importantly, when working within a specific domain one would wish to tune the first sense heuristic to the domain at hand. The first sense of star in SemCor is celestial body, however, if one were disambiguating popular news celebrity would be preferred.

Assuming that one had an accurate WSD system then one could obtain frequency counts for senses and rank them with these counts. However, the most accurate WSD systems are those which require manual tagging in the first place and their accuracy depends on the quantity of training examples (Yarowsky and Florian, 2002) available. We are therefore investigating a method of automatically ranking WordNet senses from raw text.

Many researchers are developing thesauruses from automatically parsed data. In these each target word is entered with a list of nearest neighbours. The neighbours are words ordered in terms of the "distributional similarity" that they have with the target. Distributional similarity is a measure indicating the degree that two words, a word and its neighbour, occur in similar contexts. From inspection, one can see that the sorted neighbours of such a thesaurus relate to the different senses of the target word. For example, the neighbours of star in a dependency-based thesaurus provide by Lin (1998) has the ordered list of neighbours: superstar, player, teammate, actor early in the list, but one can also see words that are related to another sense of star e.g. galaxy, sun, world and planet further down the list. We expect that the quantity and similarity of the neighbours pertaining to different senses will reflect the dominance of the sense to which they pertain. This is because there will be more relational data for the more prevalent senses compared to the less frequent senses. In this paper we describe and evaluate a method for ranking senses in WordNet: thesauruses. The neighbours for a word in a thesaurus are words themselves, rather than senses. We experiment with several WordNet Similarity measures (Patwardhan and Pedersen, 2003) to give us a semantic similarity measure (hereafter referred to as the WordNet similarity measure) to weight the contribution that each neighbour makes to the various senses of the target word.

To find the first sense of a word (w) we take each sense in turn and obtain a score reflecting the prevalence which is used for ranking. Let \(S_n \) = \(\{ n_1, n_2, n_3, \ldots \} \) be the ordered set of the top scoring \(n \) neighbours of \(w \) from the thesaurus with associated distributional similarity scores \(d(s(w, n_1), d(s(w, n_2), \ldots, d(s(w, n_n))) \). Let \(s(w) \) be the set of senses of \(w \). For each sense of \(w \) \(s(w, n \in s(w)) \) we obtain a ranking score by summing over the \(d(s(w, n_j)) \) of each neighbour \(n_j \in S_n \) multiplied by a weight. This weight is the WordNet similarity score \(s(w, n \in s(w)) \) between the target sense \(s(w, n_j) \) and the sense \(s(w, n_j \in s(w)) \) that maximises this score, divided by the sum of all such WordNet similarity scores for \(s(w, n) \). Thus we rank each sense \(s(w, n \in s(w)) \) using:

\[
P_{s(w)}(s(w, n_j)) = \sum_{n_j \in S_n} d(s(w, n_j)) \cdot \frac{u(s(w, n_j), s(w, n_j))}{\sum_{n_j \in S_n} u(s(w, n_j), s(w, n_j))}
\]

where:

\[
u(s(w, n_j), s(w, n_j)) = \max_{n_j \in s(w)} (u(s(w, n_j), s(w, n_j)))
\]

2 Acquiring the Automatic Thesaurus

The thesaurus was acquired using the method described by Lin (1998). For input we used grammatical relation data extracted using an automatic
 parsers (Briscoe and Carroll, 2002). For the experiments in sections 3 and 4 we used the 90 million words of written English from the BNC. For each noun we considered the co-occurring verbs in the direct object and subject relation, the modifying nouns in noun-noun relations and the modifying adjectives in adjectival-noun relations. We could easily extend the set of relations in the future. A noun, \(w \), is thus described by a set of co-occurrence triples \(\langle u, r, z \rangle \) and associated frequencies, where \(r \) is a grammatical relation and \(z \) is a possible co-occurrence with \(w \) in that relation. For every pair of nouns, where each noun had a total frequency in the triple data of 10 or more, we computed their distributional similarity using the measure given by Lin (1998). If \(F(u, r, z) \) is the set of co-occurrence types \(\langle u, r, z \rangle \) such that \(F(u, r, z) > 0 \), then the similarity between two nouns, \(w \) and \(v \), can be computed as:

\[
\text{Sim}(w, v) = \frac{\sum_{r \in \text{set}(F)} \sum_{z \in \text{set}(F)} \log \left(\frac{F(u, r, z) + 1}{F(u, r, z) + F(v, r, z)} \right)}{n}
\]

where:

\[
[\text{set}(F)] = \{ \langle u, r, z \rangle | F(u, r, z) > 0 \}
\]

A thesaurus entry of size \(k \) for a target noun \(w \) is then defined as the \(k \) most similar nouns to \(w \).

2.2 The WordNet Similarity Package

We use the WordNet Similarity Package 0.05 and WordNet version 1.6. The WordNet Similarity package supports a range of WordNet similarity scores. We experimented using six of these to provide the \(\text{Sim}(w, v) \) in equation 1 above and obtained results well over our baseline, but because of space limitations we give results for the two which perform the best. We briefly summarise the two measures here; for a more detailed discussion see (Patwardhan et al., 2003). The measures provide a similarity score between two WordNet senses \((s_1, s_2) \) and \((s'_1, s'_2) \), these being synsets within WordNet (Bersaneci and Polderen, 2002). This score maximises the number of overlapping words in the gloss, or definition, of the senses. It uses the glosses semantically related (according to WordNet) senses too.

jcn (Jiang and Conrath, 1997)

This score uses a "reasonable" hierarchy within WordNet and uses a frequency count for each co-occurrence type.

jcn

\[
\text{jcn}(w_1, w_2) = \frac{\sum_{r \in \text{set}(F)} \sum_{z \in \text{set}(F)} \log \left(\frac{F(u, r, z) + 1}{F(u, r, z) + F(v, r, z)} \right)}{n}
\]

A similar score is obtained by using the jcn measure with frequency counts. Each synset, is incremented with the frequency counts from the corpus of all words belonging to that synset, directly or via the hyponymy relation. The frequency data is used to calculate the "information content" (IC) of a class \(IC(X) = -\log(P(X)) \) where the third class \(IC(X) \) is the most informative, or most specific, superordinate synset of the two senses \(s_1 \) and \(s_2 \). This is transformed from a distance measure in the WN-Similarity package by taking the reciprocal.

\[
\text{jcn}(w_1, w_2) = 1 / \text{IC}(s_1, s_2)
\]

3 Experiment with SemCor

In order to evaluate our method we use the data in SemCor as a gold-standard. This is not ideal since we expect that the sense frequency distributions within SemCor will differ from those in the BNC, from which we obtain our thesaurus. Nevertheless, since many systems perform well on the English all-words task for SENSEVAL-2 by using the frequency information in SemCor this is a reasonable approach for evaluation.

We generated a thesaurus entry for all polysemous nouns which occurred in SemCor with a frequency > 20, and in the BNC with a frequency \(\geq 10 \) in the grammatical relations listed in section 2.1 above. The jcn measure uses corpus data for the calculation of IC. We experimented with counts obtained from the BNC and the Brown corpus. The variation in counts had negligible affect on the results.\(^4\) The experimental results reported here are obtained using IC counts from the BNC corpus. All the results shown here are those with the size of the thesaurus entries \(k \) set to 50.\(^6\)

We calculate the accuracy of finding the predominant sense, when there is indeed one sense with a higher frequency than the others for this word in SemCor (\(PS_{Sup} \)). We also calculate the WSD accuracy that would be obtained on SemCor, when using our first sense in all contexts (\(WSD_{Sup} \)).

3.1 Results

The results in table 1 show the accuracy of the ranking with respect to SemCor over the entire set of 2595 polysemous nouns in SemCor with the best WordNet similarity measures. The baseline measure is the percentage of words in SemCor which are correctly ranked by the thesaurus generator. The random baseline for \(\text{PS}_{Sup} \) is 24%.

3.2 Discussion

From manual analysis, there are cases where the acquired first sense disagrees with SemCor, yet is intuitively plausible. This is to be expected regardless of any inherent shortcomings of the ranking technique since the senses within SemCor will differ compared to those of the BNC. For example, in WordNet the first listed sense of pipe is "tobacco pipe", and this is ranked joint first according to the Brown files in SemCor with the second sense "tube made of metal or plastic used to carry water, oil or gas etc...". The automatic ranking of the BNC data lists the latter sense first. This seems quite reasonable given the nearest neighbours: "tube, cable, wire, tank, hose, cylinder, fitting, asp, cistern, plate...". Since SemCor is derived from the Brown corpus, which predaates the BNC by up to 30 years\(^6\) and contains a higher proportion of fiction\(^5\), the high ranking for the tobacco pipe sense according to SemCor seems plausible.

Another example where the ranking is intuitive is the first ranked sense according to SemCor is the "filter, stain: state of being unclean" whereas the automatic ranking lists dirt, ground, earth as the first sense, which is the second ranked sense in the BNC.

4 Experiment on SENSEVAL-2 English All-words Data

In order to see how well the automatically acquired predominant sense performs on a WSD task from which the WordNet sense ordering has not been taken, we use the SENSEVAL-2 all-words data (Palmer et al., 2001).\(^7\) This is a hand-tagged test suite of 5000 words of running text from three articles from the Penn Treebank II. We use an all-words task because the predominant senses will reflect the sense distributions of all nouns within the documents, rather than a lexical sample task, where the target words are usually previously determined and the results will depend on the skew of the words in the sample. We do not assume that the predominant sense is a method of WSD in itself. To disambiguate senses a system should take context into account. However, it is important to know the performance of systems for any systems that use it.

We ran a thesaurus entry for all polysemous nouns in WordNet as described in section 2.1 above. We obtained the predominant sense for each of these words and used it as the initial sense in the noun data within the SENSEVAL-2 English all-words task. We give the results for this WSD task in table 2. We compare results using the first sense listed in SemCor, and the first sense according to the SENSEVAL-2 English all-words test data itself. For the latter, we only use a first sense where there is more than one occurrence of the noun in the text data and one sense has occurred more times than any of the others. We trivially labelled all monosemous items.

Our automatically acquired predominant sense performs nearly as well as the first sense provided by SemCor, which is very encouraging given that

<table>
<thead>
<tr>
<th>Measure</th>
<th>PS Sup %</th>
<th>WSD Sup %</th>
<th>Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>jcn</td>
<td>54</td>
<td>46</td>
<td>32</td>
</tr>
<tr>
<td>jcn</td>
<td>54</td>
<td>46</td>
<td>32</td>
</tr>
</tbody>
</table>

\(^6\) We use this version of WordNet since it allows us to map information to WordNets of other languages more accurately. We are also unable to apply the method to other versions of WordNet.

\(^7\) The text in the Brown corpus was produced in 1961, whereas the bulk of the written portion of the BNC contains texts produced between 1975 and 1993.

\(^8\) We used the first sense of the BNC data for jcn using \(k = 10, 30, 50 \) and 70; however, the number of neighbours decreased as \(k \) increased giving only minimal changes to the results so we do not report them here.
5 Experiments with Domain Specific Corpora

A major motivation for our work is to try to capture changes in ranking of senses for documents from different domains. In order to test this we applied our method to two specific sections of the Reuters corpora. We demonstrate that choosing texts from a particular domain has a significant influence on the sense ranking. We chose the domains of SPORTS and FINANCE since there is sufficient material for these domains in this publically available corpus.

5.1 Reuters Corpus

The Reuters corpus (Rove et al., 2002) is a collection of about 810,000 Reuters, English Language News stories. Many of the articles are economy related, but several other topics are included too. We selected documents from the SPORTS domain (topic code: GSPO) and a limited number of documents from the FINANCE domain (topic codes: ECAT and ESAT).

The SPORTS corpus consists of 33517 documents (about 9.1 million words). The FINANCE corpus consists of 17734 documents (about 32.5 million words). We acquired thesauruses for these corpora using the procedure described in section 2.1.

5.2 Two Experiments

There is no existing sense-tagged data for these domains that we could use for evaluation. We therefore decided to select a limited number of words and to evaluate these words quantitatively. The words included in this experiment are not a random sample, since we anticipated different predominant senses in the SPORTS and FINANCE domains for these words.

Additionally, we evaluated our method quantitatively using the Subject Field Codes (SFC) resource (Magnini and Cavaglia, 2000) which annotates WordNet synsets with domain labels. The SFC contains an economy label and a sports label. For this domain label experiment we selected all the words in WordNet that have at least one synset labelled economy and at least one synset labelled sports. The resulting set consisted of 38 words.

We contrast the distribution of domain labels for these words in the 2 domain specific corpora.

5.3 Discussion

The results for 10 of the words from the qualitative experiment are summarized in table 3 with the WordNet sense number for each word supplied alongside synonyms or hyponyms from WordNet for readability. The results are promising. Most words show the change in predominant sense (PS) that we anticipated. It is not always intuitively clear which of the senses to expect as predominant sense for either a particular domain or for the BNC, but the first senses of words like division and goal shift towards the more specific senses (league and score respectively). Moreover, the chosen senses of the word tie proved to be a textbook example of the behaviour we expected.

The word share is among the words whose predominant sense remained the same for all three corpora. We anticipated that the stock certificate sense would be chosen for the FINANCE domain, but this did not happen. However, that particular sense ended up higher in the ranking for the FINANCE domain.

Figure 2 displays the results of the second experiment with the domain specific corpora. This figure shows the domain labels assigned to the predominant senses for the set of 38 words after ranking the words using the SPORTS and the FINANCE corpora. We see that both the baseball and the basketball sports label for the FINANCE corpus, and the sports label for the SPORTS corpus.

6 Related Work

Most research in WSD concentrates on using contextual features, typically neighbouring words, to help determine the correct sense of a target word. In contrast, our work is aimed at discovering the predominant senses from raw text because the first sense heuristic is such a useful one, and because hand-tagged data is not always available.

A major benefit of our work, rather than reliance on hand-tagged training data such as SemCor, is that this method permits us to produce predominant senses for the domain and text type required. Butelaar and Sacaleneu (2001) have previously explored ranking and selection of synsets in GermanNet for specific domains using the words in a given synset, and those related by hyponymy, and a term frequency measure taken from information retrieval. Butelaar and Sacaleneu have evaluated their method on identifying domain specific concepts using human judgements on 100 items. We have evaluated our method using publically available resources, both for balanced and domain specific text. Magnini and Cavaglia (2000) have identified WordNet word senses with particular domains, and this has proven useful for high precision WSD (Magnini et al., 2001); indeed in section 5 we used these domain labels for evaluation. Identification of these domain labels for word senses was semi-automatic and required a considerable amount of hand-labelling. Our approach is complementary to this. It only requires raw text from the given domain and because of this it can easily be applied to a new domain, or sense inventory, given sufficient text.

Lapata and Breivik (2004) have recently highlighted the importance of a good prior in WSD. They used syntactic evidence to find a prior distribution for verb classes, based on (Lowe, 1993), and incorporate this in a WSD system. Lapata and Breivik obtain their priors for verb classes directly from subcategorisation evidence in a parsed corpus, whereas we use parsed data to find distributionally similar words and use the nearest neighbours to the target word which reflect the different senses of the word and have associated distributional similarity scores which can be used for ranking the senses according to prevalence.

There has been some related work on using automatic thesauruses for discovering word senses from corpora Pantel and Lin (2002). In this work the lists of neighbours are themselves clustered to bring out the various senses of the word. They evaluate using the Lin measure described above in section 2.2 to determine the precision and recall of these discovered classes with respect to WordNet synsets. This method obtains precision of 61% and recall 51%.

If WordNet sense distinctions are not ultimately required then discovering the senses directly from the neighbours list is useful because sense distinctions discovered are relevant to the corpus data and new senses can be found. In contrast, we use the neighbours lists and WordNet similarity measures to im-
pose a prevalence ranking on the WordNet senses. We believe automatic ranking techniques such as ours will be useful for systems that rely on WordNet, for example those that use it for lexical acquisition or WSD. It would be useful however to combine our method of finding predominant senses with one which can automatically find new senses within text and relate these to WordNet synsets, as Ciaramita and Johnson (2003) do with unknown words.

We have restricted ourselves to nouns in this work, since this PoS is perhaps most affected by domain. We are currently investigating the performance of the first sense heuristic, and this method, for other PoS on SENSEVAL-3 data (McCarthy et al., 2004), although not yet with rankings from domain specific corpora. The lexk measure can be used when ranking adjectives, and adverbs as well as nouns and verbs (which can also be ranked using jcn). Another major advantage that lexk has is that it is applicable to lexical resources which do not have the hierarchical structure that WordNet does, but do have definitions associated with word senses.

7 Conclusions

We have devised a method that uses raw corpus data to automatically find a predominant sense for nouns in WordNet. We use an automatically acquired thesaurus and a WordNet Similarity measure. The automatically acquired predominant senses were evaluated against the hand-tagged resources SemCor and the SENSEVAL-2 English all-words task giving us 79% precision on an all-nouns task. This is just 5% lower than results using the first sense in the manually labelled SemCor, and we obtain 67% precision on polysemous nouns that are not in SemCor.

In many cases the sense ranking provided in SemCor differs to that obtained automatically because we used the BNC to produce our thesaurus. Indeed, the merit of our technique is the very possibility of obtaining predominant senses from the data at hand. We have demonstrated the possibility of finding predominant senses in domain specific corpora on a sample of nouns. In the future, we will perform a large scale evaluation on domain specific corpora. In particular, we will use balanced and domain specific corpora to isolate words having very different neighbours, and therefore rankings, in the different corpora and to detect and target words for which there is a highly skewed sense distribution in these corpora.

There is plenty of scope for further work. We want to investigate the effect of frequency and choice of distributional similarity measure (Weeds et al., 2004). Additionally, we need to determine whether senses which do not occur in a wide variety of grammatical contexts fare badly using distributional measures of similarity, and what can be done to combat this problem using relation specific thesauruses.

Whilst we have used WordNet as our sense inventory, it would be possible to use this method with another inventory given measure of semantic relatedness between the neighbours and the senses. The lexk measure for example, can be used with definitions in any standard machine readable dictionary.

Acknowledgements

We would like to thank Siddharth Patwardhan and Ted Pedersen for making the WN Similarity package publically available. This work was funded by EU-2001-34460 project MEANING: Developing Multilingual Web-scale Language Technologies, UK EPSRC project Robust Accurate Statistical Parsing (RASP) and a UK EPSRC studentship.

References

